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HOMOMORPHIC PROCESSING OF SEISMIC SIGNALS

by
John E. Brolley

ABSTRACT

An introduction to homomorphic processing of
time series is presented. The basic concept is
discussed and one form of implementation is adduced.
Simple examples of reverberation problems are illus-
trated. Simple applications to real-time series
associated with underground nuclear explosions and
earthquakes are then presented.

I. INTRODUCTION

Determination of a physical descriptor for an underground release of
energy is of considerable practical interest. One mode of attack uses seismo-
meter signals. In this mode the associated seismic signals may be tracked in
either direction. The present and ensuing reports will be concerned with the
inverse problem tracing the signal back from the seismometer to the source.

A model suitable for didactic purposes is the following. The local energy
release from the underground explosion or earthquake is described in terms of
the earth motion near the energy release. Thus, there is some function x(r,t),
which we seek to find, that describes motion for location r and time t outside
a region of inelastic behavior. It is possible to write a wave equation for
x{r,t) that is obeyed outside the inelastic zone. Analogous to electromagnetic
theory, a scalar potentia11_3 can be introduced to solve the wave equation for
the body or compressional waves. For the case of the underground explosion it
is possible to parametrize this potential in terms of explosion characteristics.
The term x(r,t) has a simple re]ation2 to the potential ¢. The Fourier trans-
form of @(r,t) will be called the source function, F(w), for this discussion.



The source wavelet emitted by the explosion will propagate through the
crust in which the explosion occurred, through the mantle and then through the
crust again to a seismometer that has a characteristic response function. Each
of these factors will convolve with the source wavelet to produce the seismometer
time series. The Fourier transform, S(w) of the time series will yield the pro-
duct of the Fourier transforms of the convolution factors.4 Thus,

S{w) = Flw)-T(w) -M(w)-U(w)- {w) , (1)

where T(w) is the first crustal transfer function, M(w) is the mantle transfer,
U(w) is the second crustal transfer function, and I(w) is the instrument trans-
fer function. A geometrical factor has been ignored.

The objective is to recover a useful estimate of F(w) from the data S(w).
The problem has already been simplified somewhat by transforming from a convolu-
tional space to a product space.

II. HOMOMORPHIC DECONVOLUTION
S(w) is a complex number resulting from taking the Fourier transform of a
real time series s(t). Oppenheim5 recognized that the product space of Eq. (1)

could be transformed to an additive linear space by taking the complex logarithm
of S(w). Thus

log S(w) = log F(w) + log T(w) + log M(w) + log U(w) + Tog I(w) . (2)

It is attractive to operate in this type of space. One notes that if estimates
of the logarithms of T(w), M(w), U(w), and I(w) are available, they may be sub-
tracted from log S(w) leaving only log F(w). It is often more convenient to
have this linear space be in a field of real variables. This is accomplished by
taking the inverse Fourier transform of Eq. (2). The result is a sequence of
real numbers termed the complex cepstrum. Filtering can then be performed in
the real domain and then the inverse operation performed. The sequence of oper-
ations is shown Figs. 1 and 2. This is Oppenheim's procedure for homomorphic
‘deconvolution.

The complex cepstrum is a sequence of real numbers. The appellation
complex is employed to distinguish it from the cepstrum of Bogert et a].6 The
complex cepstrum retains phase information while the other does not.
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Fig. 1. Fig. 2.
Computation of the complex cepstrum. Regeneration from the complex cepstrum

III. TIMPLEMENTATION

The most difficult step in the calculation of the complex cepstrum is the
evaluation of the logarithm. This is a complex number that can be characterized
by a magnitude and a phase. The problem can be defined in terms of properties
of the Z-transform of the original time series, the seismometer data. A time
series, x(t), can be characterized by its two-sided Z-transform,

X(z) = Dox(t )z . (3)
N=—o
It can be shown that Eq. (3) may be written in terms of products of polynomials
in z having zeroes inside and outside the unit circle of the complex plain. For
data sequences having zeroes near the unit circle, the calculation of the phase

of Togarithm becomes rather troublesome. Several methods7’8

have been employed.
The present tutorial will use the procedure of Tribolet® that involves adaptive
phase unwrapping.

If a time series has all of its zeroes, as defined above, outside the unit
circle it is called a maximum phase signal. If all of its zeroes are inside,

it is called a minimum phase signal. If it has zeroes both inside and outside,
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it is called a mixed-phase signal. It can be shown that the complex cepstra of
minimum phase signals all reside in the positive time region, and the complex
cepstra of maximum phase signals are in the negative time region. In general,
source wavelets of interest will be mixed phase.

The convolution of the source function with the remaining factors may be
thought of as convolving with an impulse function of the earth.g_]]

shown by SchaferZ that the impulse train can be made minimum phase by weighting

tn/At)

It has been
the seismometer time series with the exponential factor a( » where o < 1,
and At is the increment between data points. Further it can be shown that the
source function will have most of its energy in the low time regiong—]] of the
complex cepstrum while the minimum phase impulse contribution will be in the
high time region. Thus, by setting the complex cepstrum to zero above some low
time value and performing the inverse operations, an estimate of the source
function can be obtained. Zeroing the complex cepstrum on the other side of the
Tow time value and performing the inverse operations will yield an estimate of
the impulse train.

IV.  EXAMPLES

For purposes of orientation, two examp]es]2 which have known analytical
solutions and two examples from real world time series will be given. A two-
point time series may be specified by the relation

b s(t) - (¢t - 1)]
b =0.94 (4)
[t is plotted in Fig. 3. The complex cepstrum is given by

>

m=1

ETi 8(T - mr) . (5)
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This is plotted in Fig. 4. The machine calculation, performed on a CDC 7600,
using the adaptive integration scheme, of the complex cepstrum is shown in

Fig. 5. The regenerated time series obtained by performing a machine inversion
of the cepstrum of Fig. 5 is shown in Fig. 6. Another time series is given by




02,2079 12 42 0S. TvO POINT DATA 128PTS

02/,20/79 12 53 §5. ACTUAL CEPSTRUM TwO POINT DATA 128.512

(K] T T T T T T . .l l TT™ T T T T
-8 9
LK b
.. -4
s p
~ p
-4 4
K 4
~t
.. -
-t 4
Y s
-8 -
ey 4
§ §
< 4 3 e 4 3 ' - i it d 3 e i
. . -, -. " . [ ”n - - -. ([ . e,
TIME TIME

Fig. 3.
Two-point time series.

02720779 13 01 33. CALCULATED CEPSTRUM TwO POINT DATA 128.512

Fig. 4.
Exact complex cepstrum of the two-
point time series.

02,20/719 12 58 18. REGENERAIED TWwO POINT DATA

. v| ' T T T T T 1. T T T T T T
. g
" g
. E
Y S g
K 4
-3¢ -4
-2 -
Y 8 4
. -4
-t E
-af 4
Y S B
Y S g
g
g Ll 1 2
- — L] o -
3 §
a
z <
< I i . n i 4 . J i i i d
. - © - 108 129, 1v8. » . -, .. ] . 188,
TikE TIRE

Fig. 5.

Machine calculation of the two-point

time series complex cepstrum.

Fig. 6.
Regeneration of the two-point time
series from the machine calculation of
the complex cepstrum.



f: (-1)"R"s(t - nt) (6)
n=0

R=10.75
This is plotted in Fig. 7. The complex cepstrum is given by

3 "B (r - o) (7)
m=1

This is plotted in Fig. 8. The corresponding machine calculation is shown in
Fig. 9. The machine regenerated time series is shown in Fig. 10. Both of these
time series are minimum phase.

Next a seismogram from the Albuquerque Seismic Research Observatory (SRO)
station of the North China earthquake of 27 July 1976 is shown in Fig 11. This
is the first portion of the short period (20 samples per second) record. The
initial portion of Fig. 10 is displayed in more detail in Fig. 12. In this and
the following example, no attempt has been made to precisely identify the arri-
val time. An exponential weighting factor, a = 0.94, was appiied to the time
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Fig. 7. Fig. 8.
Time series that models a simple re- Exact complex cepstrum of Fig. 7.
verberation problem.

6




AMPLITUDE

AMF DL

02720779 13 16 32. CALCULATED REVERBERATION CEPSTRUM

~

TIME

Fig. 9.

G5, o4 39 Al CRU MGP M CRINR LERIWOULYE 208BPTS

Machine calculation of the complex
cepstrum of Fig. 7.

IAI b4

Fig. 11.
First 2048 points of the ABQ/SRO

short

period record of the North China earth-

quake. At = 0.05s.

AMPL 1 TUDE

02720779 13 18 3|. RECENERATED REVERBERATION DATA

[}

..

..

-~

| l...

. } | |_ ' oot

g

Y &

-t

i
. . -, -. " 1 ~e.
TIME

‘ Fig. 10.
Regeneration from Fig. 9.

05/17,3% 07 47)46 ABO SRO NORTH CHINA EARTHOUAKE

AMPL [ TUDE

T )
! A
RN

.8

-0

Fig. 12.
Detail of the beginning of the North
China record of Fig. 11.



series and the complex cepstrum computed. The region of maximum energy is shown
in Fig. 13. The inverse operations were then applied to the complex cepstrum.
The regenerated time series is displayed in Fig. 14 and may be compared with
Fig. 12.

As another real world example, the seismic signal from the Nevada Test
Site for the shot Farallones is displayed in Fig. 15. This was recorded at the
Bolivian ASRO Station ZOBO. The approximate measured time of arrival was 11m,
13 s. The estimated travel time from tables 13 was 11 m, 12 s for the short-
period body waves. The initial signal is shown in more detail in Fig. 16. The
time series was then exponentially weighted with a = 0.945 and the complex cep-
strum computed. The result is shown in Fig. 17. The regenerated time series is
shown in Fig, 18 and may be compared with Fig. 16. The cepstrum of Fig. 17 is
Tow time filtered by setting all data above T = 10 to zero and the inverse opera-
tions performed. The result shown in Fig, 19 is obtained. This is a crude

estimate of the source wavelet.
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3 T Y T T Y T T [X]

o} ] N A
b N

e 1 _ RN P

-2

E -~ .% -4.8 \/
) $
Fig. 13. Fig. 14.
Portion of the machine calculation of Regeneration for the North China seis-
the complex cepstrum of the North China  mogram. ¢
seismogram.
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Fig. 15.
First 2048 points of the ZOBO/ASRO
short period record of NTS shot
Farallones. At = 0.05 s.
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Detail of the beginning of the
Farallones record.
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Regeneration of the Farallones seismo-
gram,
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Fig. 19.
Crude estimate of the source wavelet by regenerating
from a Tow time-gated complex cepstrum.

V. CONCLUSIONS
A1l of the examples presented in this tutorial are for illustrative pur-

poses only. They do suggest, however, that the present code might be useful in
generating gated cepstra whose applicability to the pattern recognition prob-
14,15 could be explored.

The problem of signal conditioning, apart from exponential weighting, was
not considered. These are several aspects of this problem to be studied. More-
over, it is probably desirable to identify and use a more robust technique for

lem

computing the complex cepstrum than that used here.
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